

Penalty Functions

Alice E. Smith and David W. Coit

Department of Industrial Engineering

University of Pittsburgh

Pittsburgh, Pennsylvania 15261 USA

Section C 5.2 of Handbook of Evolutionary Computation

Editors in Chief

Thomas Baeck

David Fogel

Zbigniew Michalewicz

A Joint Publication of Oxford University Press and Institute of Physics Publishing

Revised January 1996

Published as “Constraint-Handling Techniques - Penalty Functions,” Alice E. Smith and David
W. Coit, in Handbook of Evolutionary Computation, Institute of Physics Publishing and Oxford

University Press, Bristol, U.K., 1997, Chapter C5.2.

 1

C 5.2 Penalty Functions

This chapter begins with the motivation and general form of penalty functions as used in

evolutionary computation. The main types of penalty functions - constant, static, dynamic,

adaptive - are described within a common notation framework. References from the literature

concerning these exterior penalty approaches are presented. The chapter concludes with a brief

discussion of promising areas of future research in penalty methods for constrained optimization

by evolutionary computation.

C 5.2.1 Introduction to Penalty Functions

 Penalty functions have been a part of the literature on constrained optimization for decades.

Two basic types of penalty functions exist; exterior penalty functions, which penalize infeasible

solutions, and interior penalty functions, which penalize feasible solutions. It is the former type

of penalty functions which is discussed throughout section C 5.2, however the area of interior

penalty functions is of potential research interest in evolutionary computation. The main idea of

interior penalty functions is that an optimal solution requires that a constraint be active (i.e.,

tight) so that this optimal solutions lies on the boundary between feasibility and infeasibility.

Knowing this, a penalty is applied to feasible solutions when the constraint is not active, so-

called “interior solutions.” For a single constraint, this approach is straightforward (although it

has not been seen in the evolutionary computation literature), however for the more common

case of multiple constraints, the implementation of interior penalty functions is considerably

more complex.

 Three degrees of exterior penalty functions exist: (1) barrier methods in which no infeasible

solution is considered, (2) partial penalty functions in which a penalty is applied near the

feasibility boundary, and (3) global penalty functions that are applied throughout the infeasible

region (Schwefel 1995, page 16). In the area of combinatorial optimization, the popular

Lagrangian relaxation method (Avriel 1976, Fisher 1981, Reeves 1993) is a variation on the

 2

same theme: temporarily relax the problem’s most difficult constraints, using a modified

objective function to avoid straying too far from the feasible region. In general, a penalty

function approach is as follows. Given an optimization problem, the following is the most

general formulation of constraints:

 min f(x) (1)

 s.t. x ∈ A

 x ∈ B

where x is a vector of decision variables, the constraints “x ∈ A” are relatively easy to satisfy,

and the constraints “x ∈ B” are relatively difficult to satisfy, the problem can be reformulated as

 min f(x) + p(d(x, B)) (2)

 s.t. x ∈ A

where d(x, B) is a metric function describing the distance of the solution vector x from the region

B, and p(⋅) is a monotonically non-decreasing penalty function such that p(0) = 0. If the exterior

penalty function, p(⋅), grows quickly enough outside of B, the optimal solution of (1) will also be

optimal for (2). Furthermore, any optimal solution of (2) will provide an upper bound on the

optimum for (1), and this bound will in general be tighter than that obtained by simply

optimizing f(x) over A.

 In practice, the constraints “x ∈ B” are expressed as inequality and equality constraints in the

form of

 gi(x) ≤ 0 for i = 1, ..., q

 hi(x) = 0 for i = q + 1, ..., m

 where q = number of inequality constraints

 m - q = number of equality constraints

 Various families of functions p(⋅) and d(⋅) have been studied for evolutionary optimization to

dualize constraints. Different possible distance metrics, d(⋅), include a count of the number of

violated constraints, the Euclidean distance between x and B as suggested by Richardson et al.

(1989), a linear sum of the individual constraint violations or a sum of the individual constraint

 3

violations raised to an exponent, κ. Variations of these approaches have been attempted with

different degrees of success. Some of the more notable examples are described in the following

sections.

 It can be difficult to find a penalty function that is an effective and efficient surrogate for the

missing constraints. The effort required to tune the penalty function to a given problem instance

or repeatedly calculate it during search may negate any gains in eventual solution quality. As

noted by Siedlecki and Sklansky (1989), much of the difficulty arises because the optimal

solution will frequently lie on the boundary of the feasible region. Many of the solutions most

similar to the genotype of the optimum solution will be infeasible. Therefore, restricting the

search to only feasible solutions or imposing very severe penalties makes it difficult to find the

schemata that will drive the population toward the optimum as shown in the research of Smith

and Tate (1993), Anderson and Ferris (1994), Coit et al. (1996) and Michalewicz (1995).

Conversely, if the penalty is not severe enough, then too large a region is searched and much of

the search time will be used to explore regions far from the feasible region. Then, the search will

tend to stall outside the feasible region. A good comparison of six penalty function strategies

applied to continuous optimization problems is given in Michalewicz (1995). These strategies

include both static and dynamic approaches, as discussed below, as well as some less generic

approaches such as sequential constraint handling (Schoenauer and Xanthakis 1993) and forcing

all infeasible solutions to be dominated by all feasible solutions in a given generation (Powell

and Skolnick 1993).

C 5.2.2 Static Penalty Functions

 A simple method to penalize infeasible solutions is to apply a constant penalty to those

solutions that violate feasibility in any way. The penalized objective function would then be the

unpenalized objective function plus a penalty (for a minimization problem). A variation is to

construct this simple penalty function as a function of the number of constraints violated, where

there are multiple constraints. The penalty function for a problem with m constraints would then

be as below (for a minimization problem):

 4

 (3) f f Cp i
i

m

i() ()x x= +
=
∑

1
δ

 where
1, if constraint is violated
0, if constraint is satisfied

i

i

i
i

δ
δ

=
=





fp(x) is the penalized objective function, f(x) is the unpenalized objective function, and Ci is a

constant imposed for violation of constraint i. This penalty function is based only on the number

of constraints violated, and is generally inferior to the second approach based on some distance

metric from the feasible region (Goldberg 1989, Richardson et al. 1989).

 More common and more effective is to penalize according of distance to feasibility, or the

“cost to completion,” as termed by Richardson et al. (1989). This was done crudely in the

constant penalty functions of the preceding paragraph by assuming distance can be stated solely

by number of constraints violated. A more sophisticated and more effective penalty includes a

distance metric for each constraint, and adds a penalty that becomes more severe with distance

from feasibility. Complicating this approach is the assumption that the distance metric chosen

appropriately provides information concerning the nearness of the solution to feasibility, and the

further implicit assumption that this nearness to feasibility is relevant in the same magnitude to

the fitness of the solution. Distance metrics can be continuous (see for example, Juliff 1993) or

discrete (see for example, Patton et al. 1995), and could be linear or nonlinear (see for example,

Le Riche et al. 1995).

 A general formulation is as follows for a minimization problem:

 (4) f f Cp i i
i

m

() ()x x= +
=
∑ κ

1

d

 where d
g i q

h i qi
i i

i
=





δ (),
() ,

x
x

for = 1, ...,
for = +1, ..., m

di is the distance metric of constraint i applied to solution x and κ is a user-defined exponent,

with values of κ of 1 or 2 often used. Constraints 1 through q are inequality constraints, so the

penalty will only be activated when the constraint is violated (as shown by the δ function above),

while constraints q + 1 through m are equality constraints which will activate the penalty if there

 5

is any distance between the solution value and the constraint value (as shown in the absolute

distance above). In equation 4 above, defining Ci is more difficult. The advice from Richardson

et al. (1989) is to base Ci on the expected or maximum cost to repair the solution (i.e. alter the

solution so it is feasible). For most problems, however, it is not possible to determine Ci using

this rationale. Instead, it must be estimated based on the relative scaling of the distance metrics

of multiple constraints, the difficulty of satisfying a constraint, and the seriousness of a

constraint violation, or be determined experimentally.

 Many researchers in evolutionary computation have explored variations of distance-based

static penalty functions (e.g., Baeck and Khuri 1994, Goldberg 1989, Huang et al. 1994, Olsen

1994, Richardson et al. 1989). One example (Thangiah 1995) uses a linear combination of three

constant distance based penalties for the three constraints of the vehicle routing with time

windows problem. Another novel example is from Le Riche et al. (1995) where two separate

distance-based penalty functions are used for each constraint in two genetic algorithm segregated

subpopulations. This “double penalty” somewhat improved robustness to penalty function

parameters since the feasible optimum is approached with both a severe and a lenient penalty.

Homaifar et al. (1994) developed a unique static penalty function with multiple violation levels

established for each constraint. Each interval is defined by the relative degree of constraint

violation. For each interval l, a unique constant, Cil is then used as a penalty function

coefficient. This approach has the considerable disadvantage of requiring iterative tuning

through experimentation of a large number of parameters.

C 5.2.3 Dynamic Penalty Functions

 The primary deficiency with static penalty functions is the inability of the user to determine

criteria for the Ci coefficients. Also, there are conflicting objectives involved with allowing

exploration of the infeasible region, yet still requiring that the final solution be feasible. A

variation of distance-based penalty functions, that alleviates much of these difficulties, is to

incorporate a dynamic aspect that (generally) increases the severity of the penalty for a given

distance as the search progresses. This has the property of allowing highly infeasible solutions

 6

early in the search, while continually increasing the penalty imposed to eventually move the final

solution to the feasible region. A general form of a distance based penalty method incorporating

a dynamic aspect based on length of search, t, is as follows for a minimization problem:

 (5) f t f s t dp i
i

m

(,) () ()x x= +
=
∑ κ

1
i

where si(t) is a monotonically non-decreasing in value with t. Metrics for t include number of

generations or the number of solutions searched. Recent uses of this approach include Joines

and Houck (1994) for continuous function optimization and Olsen (1994) and Michalewicz and

Attia (1994), which compare several penalty functions, all of which consider distance, but some

also consider evolution time. A common objective of these dynamic penalty formulations is that

they result in feasible solutions at the end of evolution. If si(t) is too lenient, final infeasible

solutions may result, and if si(t) is too severe, the search may converge to non-optimal feasible

solutions. Therefore, these penalty functions typically require problem-specific tuning to

perform well. One explicit example of si(t) is as follows, from Joines and Houck (1994),

 si(t) = (Ci t)α

where α is constant equal to 1 or 2, as defined by Joines and Houck.

C 5.2.4 Adaptive Penalty Functions

 While incorporating distance together with the length of the search into the penalty function

has been generally effective, these penalties ignore any other aspects of the search. In this

respect, they are not adaptive to the ongoing success (or lack thereof) of the search and cannot

guide the search to particularly attractive regions or away from unattractive regions based on

what has already been observed. A few authors have proposed making use of such search-

specific information. Siedlecki and Sklansky (1989) discuss the possibility of adaptive penalty

functions, but their method is restricted to binary-string encodings with a single constraint, and

involves considerable computational overhead.

 Bean and Hadj-Alouane (1992) and Hadj-Alouane and Bean (1992) propose penalty

functions that are revised based on the feasibility or infeasibility of the best, penalized solution

 7

during recent generations. Their penalty function allows either an increase or a decrease of the

imposed penalty during evolution as shown below, and was demonstrated on multiple choice

integer programming problems with one constraint. This involves the selection of two constants,

β1 and β2 (β1>β2>1), to adaptively update the penalty function multiplier, and the evaluation of

the feasibility of the best solution over successive intervals of Nf generations. As the search

progresses, the penalty function multiplier is updated every Nf generations based on whether or

not the best solution was feasible during that interval. Specifically, the penalty function is as

follows,

 (6) f k f dp k i
i

m

(,) ()x x= +
=
∑λ κ

1

 λ
λ β
λ β
λ

k

k f

k f

k

N
N+ =









1

1

2

,

,

 if previous generations have infeasible best solution
, if previous generations have feasible best solution

 otherwise

 Smith and Tate (1993) and Tate and Smith (1995) used both search length and constraint

severity feedback in their penalty function, which was enhanced by the work of Coit et al.

(1996). This penalty function involves the estimation of a near-feasible threshold (NFT) for each

constraint. Conceptually, the NFT is the threshold distance from the feasible region at which the

user would consider the search as “getting warm.” The penalty function encourages the

evolutionary algorithm to explore within the feasible region and the NFT-neighborhood of the

feasible region, and discourage search beyond that threshold. This formulation is given below:

 f t f F t F t d
NFTp feas all

i

ii

m

(,) () (() ())x x= + − 



=

∑
 κ

1
 (7)

where Fall(t) denotes the unpenalized value of the best solution yet found, and Ffeas(t) denotes the

value of the best feasible solution yet found. The Fall(t) and Ffeas(t) terms serve several purposes.

First, they provide adaptive scaling of the penalty based on the results of the search. Second,

they combine with the NFTi term to provide a search specific and constraint specific penalty.

 The general form of NFTi is:

 8

 NFT NFT
i

i

i
=

+
o

1 Λ (8)

where NFToi is an upper bound for NFTi. Λi is a dynamic search parameter used to adjust NFTi

based on the search history. In the simplest case, Λi can be set to zero and a static NFTi results.

Λi can also be defined as a function of the search, for example, a function of the generation

number (t), i.e., Λi = f(t) = λit. A positive value of λi results in a monotonically decreasing NFTi

(and thus, a larger penalty) and a larger λi more quickly decreases NFTi as the search progresses,

incorporating both adaptive and dynamic elements.

 If NFTi is intuitively ill-defined, it can be set at a large value initially with a positive constant

λi used to iteratively guide the search to the feasible region. This dynamic NFTi circumvents the

need to perform experimentation to determine appropriate penalty function parameter values.

However, if problem-specific information is at hand, a more efficient search can take place by a

priori defining a tighter region or even static values of NFTi.

C 5.2.5 Future Directions in Penalty Functions

 Two areas requiring further research are the development of completely adaptive penalty

functions that require no user-specified constants and the development of improved adaptive

operators to exploit characteristics of the search as they are found. The notion of adaptiveness is

to leverage the information gained during evolution to improve both the effectiveness and the

efficiency of the penalty function used. Another area of interest is to explore the assumption that

multiple constraints can be linearly combined to yield an appropriate penalty function. This

implicit assumption of all penalty functions used in the literature assumes that constraint

violations incur independent penalties and therefore, there is no interaction between constraints.

Intuitively, this seems to be a possibly erroneous assumption, and one could make a case for a

penalty that increases more than linearly with the number of constraints violated.

 9

C 5.2 References
E J Anderson and M C Ferris 1994 Genetic algorithms for combinatorial optimization: the
assembly line balancing problem ORSA Journal on Computing 6 161-173

M. Avriel 1976 Nonlinear Programming: Analysis and Methods Prentice Hall Englewood Cliffs
NJ

T Baeck and S Khuri 1994 An evolutionary heuristic for the maximum independent set problem
Proceedings of the First IEEE Conference on Evolutionary Computation 531-535

J C Bean and A B Hadj-Alouane 1992 A dual genetic algorithm for bounded integer programs
University of Michigan Technical Report 92-53 to appear in RAIRO - RO
D W Coit A E Smith and D M Tate 1996 Adaptive penalty methods for genetic optimization of
constrained combinatorial problems INFORMS Journal on Computing in print

M L Fisher 1981 The Lagrangian relaxation method for solving integer programming problems
Management Science 27 1-18

D E Goldberg 1989 Genetic Algorithms in Search Optimization and Machine Learning Addison-
Wesley Reading MA

A B Hadj-Alouane and J C Bean 1992 A genetic algorithm for the multiple-choice integer
program University of Michigan Technical Report 92-50 to appear in Operations Research

A Homaifar S H-Y Lai and Z Qi 1994 Constrained optimization via genetic algorithms
Simulation 62 242-254

W-C Huang C-Y Kao and J-T Horng 1994 A genetic algorithm approach for set covering
problem Proceedings of the First IEEE Conference on Evolutionary Computation 569-573

J A Joines and C R Houck 1994 On the use of non-stationary penalty functions to solve
nonlinear constrained optimization problems with GA’s Proceedings of the First IEEE
Conference on Evolutionary Computation 579-584

K Juliff 1993 A multi-chromosome genetic algorithm for pallet loading Proceedings of the Fifth
International Conference on Genetic Algorithms 467-473

R G Le Riche C Knopf-Lenoir and R T Haftka 1995 A segregated genetic algorithm for
constrained structural optimization Proceedings of the Sixth International Conference on
Genetic Algorithms 558-565

Z Michalewicz 1995 Genetic algorithms numerical optimization and constraints Proceedings of
the Sixth International Conference on Genetic Algorithms 151-158

Z Michalewicz and N Attia 1994 Evolutionary optimization of constrained problems
Proceedings of the 3rd Annual Conference on Evolutionary Programming 98-108

A L Olsen 1994 Penalty functions and the knapsack problem Proceedings of the First IEEE
Conference on Evolutionary Computation 554-558

A L Patton W F Punch III and E D Goodman 1995 A standard GA approach to native protein
conformation prediction Proceedings of the Sixth International Conference on Genetic
Algorithms 574-581

 10

D Powell and M M Skolnick 1993 Using genetic algorithms in engineering design optimization
with non-linear constraints Proceedings of the Fifth International Conference on Genetic
Algorithms 424-430

C R Reeves 1993 Modern Heuristic Techniques for Combinatorial Problems John Wiley & Sons
New York

J T Richardson M R Palmer G Liepins and M Hilliard 1989 Some guidelines for genetic
algorithms with penalty functions Proceedings of the Third International Conference on Genetic
Algorithms 191-197

M Schoenauer and S Xanthakis 1993 Constrained GA optimization Proceedings of the Fifth
International Conference on Genetic Algorithms 573-580

H-P Schwefel 1995 Evolution and Optimum Seeking John Wiley & Sons

W Siedlecki and J Sklansky 1989 Constrained genetic optimization via dynamic reward-penalty
balancing and its use in pattern recognition Proceedings of the Third International Conference
on Genetic Algorithms 141-150

A E Smith and D M Tate 1993 Genetic optimization using a penalty function Proceedings of the
Fifth International Conference on Genetic Algorithms 499-505

D M Tate and A E Smith 1995 Unequal area facility layout using genetic search IIE
Transactions 27 465-472

S R Thangiah 1995 An adaptive clustering method using a geometric shape for vehicle routing
problems with time windows Proceedings of the Sixth International Conference on Genetic
Algorithms 536-543

